Open Tech Pub

那些年关注的技术

JVM工作原理摘要

一、JVM的生命周期

1.JVM实例对应了一个独立运行的java程序它是进程级别

a)启动。启动一个Java程序时,一个JVM实例就产生了,任何一个拥有public static void main(String[] args)函数的class都可以作为JVM实例运行的起点

b)运行。main()作为该程序初始线程的起点,任何其他线程均由该线程启动。JVM内部有两种线程:守护线程和非守护线程,main()属于非守护线程,守护线程通常由JVM自己使用,java程序也可以标明自己创建的线程是守护线程

c)消亡。当程序中的所有非守护线程都终止时,JVM才退出;若安全管理器允许,程序也可以使用Runtime类或者System.exit()来退出

2.JVM执行引擎实例则对应了属于用户运行程序的线程它是线程级别的

二、JVM的体系结构

1.类装载器(ClassLoader)(用来装载.class文件)

2.执行引擎(执行字节码,或者执行本地方法)

3.运行时数据区(方法区、堆、java栈、PC寄存器、本地方法栈)

三、JVM类加载器

JVM整个类加载过程的步骤:

1.装载

装载过程负责找到二进制字节码并加载至JVM中,JVM通过类名、类所在的包名通过ClassLoader来完成类的加载, 同样,也采用以上三个元素来标识一个被加载了的类:类名+包名+ClassLoader实例ID。

2.链接

链接过程负责对二进制字节码的格式进行校验、初始化装载类中的静态变量以及解析类中调用的接口、类。

完成校验后,JVM初始化类中的静态变量,并将其值赋为默认值。

最后对类中的所有属性、方法进行验证,以确保其需要调用的属性、方法存在,以及具备应的权限(例如public、private域权限等),会造成NoSuchMethodError、NoSuchFieldError等错误信息。

3.初始化

初始化过程即为执行类中的静态初始化代码、构造器代码以及静态属性的初始化,在四种情况下初始化过程会被触发执行:

调用了new;

反射调用了类中的方法;

子类调用了初始化;

JVM启动过程中指定的初始化类。

JVM类加载顺序:

JVM两种类装载器包括:启动类装载器和用户自定义类装载器。

启动类装载器是JVM实现的一部分;

用户自定义类装载器则是Java程序的一部分,必须是ClassLoader类的子类。

JVM装载顺序:

Jvm启动时,由Bootstrap向User-Defined方向加载类;

应用进行ClassLoader时,由User-Defined向Bootstrap方向查找并加载类;

1.Bootstrap ClassLoader

这是JVM的根ClassLoader,它是用C++实现的,JVM启动时初始化此ClassLoader,并由此ClassLoader完成$JAVA_HOME中jre/lib/rt.jar(Sun JDK的实现)中所有class文件的加载,这个jar中包含了java规范定义的所有接口以及实现。

2.Extension ClassLoader

JVM用此classloader来加载扩展功能的一些jar包。

3.System ClassLoader

JVM用此classloader来加载启动参数中指定的Classpath中的jar包以及目录,在Sun JDK中ClassLoader对应的类名为AppClassLoader。

4.User-Defined ClassLoader

User-DefinedClassLoader是Java开发人员继承ClassLoader抽象类自行实现的ClassLoader,基于自定义的ClassLoader可用于加载非Classpath中的jar以及目录。

ClassLoader抽象类的几个关键方法:

(1)loadClass

此方法负责加载指定名字的类,ClassLoader的实现方法为先从已经加载的类中寻找,如没有则继续从parent ClassLoader中寻找,如仍然没找到,则从System ClassLoader中寻找,最后再调用findClass方法来寻找,如要改变类的加载顺序,则可覆盖此方法

(2)findLoadedClass

此方法负责从当前ClassLoader实例对象的缓存中寻找已加载的类,调用的为native的方法。

(3)findClass

此方法直接抛出ClassNotFoundException,因此需要通过覆盖loadClass或此方法来以自定义的方式加载相应的类。

(4)findSystemClass

此方法负责从System ClassLoader中寻找类,如未找到,则继续从Bootstrap ClassLoader中寻找,如仍然为找到,则返回null。

(5)defineClass

此方法负责将二进制的字节码转换为Class对象

(6)resolveClass

此方法负责完成Class对象的链接,如已链接过,则会直接返回。

四、JVM执行引擎

在执行方法时JVM提供了四种指令来执行:

  1. invokestatic:调用类的static方法

  2. invokevirtual:调用对象实例的方法

  3. invokeinterface:将属性定义为接口来进行调用

  4. invokespecial:JVM对于初始化对象(Java构造器的方法为:)以及调用对象实例中的私有方法时。

主要的执行技术有:

解释,即时编译,自适应优化、芯片级直接执行

  1. 解释属于第一代JVM,

  2. 即时编译JIT属于第二代JVM,

  3. 自适应优化(目前Sun的HotspotJVM采用这种技术)则吸取第一代JVM和第二代

JVM的经验,采用两者结合的方式

开始对所有的代码都采取解释执行的方式,并监视代码执行情况,然后对那些经常调用的方法启动一个后台线程,将其编译为本地代码,并进行优化。若方法不再频繁使用,则取消编译过的代码,仍对其进行解释执行。

五、JVM运行时数据区

第一块:PC寄存器

PC寄存器是用于存储每个线程下一步将执行的JVM指令,如该方法为native的,则PC寄存器中不存储任何信息。

第二块:JVM栈

JVM栈是线程私有的,每个线程创建的同时都会创建JVM栈,JVM栈中存放的为当前线程中局部基本类型的变量(java中定义的八种基本类型:boolean、char、byte、short、int、long、float、double)、部分的返回结果以及Stack Frame,非基本类型的对象在JVM栈上仅存放一个指向堆上的地址

第三块:堆(Heap)

它是JVM用来存储对象实例以及数组值的区域,可以认为Java中所有通过new创建的对象的内存都在此分配,Heap中的对象的内存需要等待GC进行回收。

  1. 堆是JVM中所有线程共享的,因此在其上进行对象内存的分配均需要进行加锁,这也导致了new对象的开销是比较大的

  2. Sun Hotspot JVM为了提升对象内存分配的效率,对于所创建的线程都会分配一块独立的空间TLAB(Thread Local Allocation Buffer),其大小由JVM根据运行的情况计算而得,在TLAB上分配对象时不需要加锁,因此JVM在给线程的对象分配内存时会尽量的在TLAB上分配,在这种情况下JVM中分配对象内存的性能和C基本是一样高效的,但如果对象过大的话则仍然是直接使用堆空间分配

  3. TLAB仅作用于新生代的Eden Space,因此在编写Java程序时,通常多个小的对象比大的对象分配起来更加高效。

第四块:方法区域(Method Area)

  1. 在Sun JDK中这块区域对应的为PermanetGeneration,又称为持久代。

  2. 方法区域存放了所加载的类的信息(名称、修饰符等)、类中的静态变量、类中定义为final类型的常量、类中的Field信息、类中的方法信息,当开发人员在程序中通过Class

对象中的getName、isInterface等方法来获取信息时,这些数据都来源于方法区域,同时方法区域也是全局共享的,在一定的条件下它也会被GC,当方法区域需要使用的内存超过其允许的大小时,会抛出OutOfMemory的错误信息。

第五块:运行时常量池(Runtime Constant Pool)

存放的为类中的固定的常量信息、方法和Field的引用信息等,其空间从方法区域中分配。

第六块:本地方法堆栈(Native Method Stacks)

JVM采用本地方法堆栈来支持native方法的执行,此区域用于存储每个native方法调用的状态。

六、JVM垃圾回收

JVM分别对新生代和旧生代采用的两种垃圾回收机制?

  1. 新生代的GC:新生代通常存活时间较短,因此基于Copying算法来进行回收,所谓Copying算法就是扫描出存活的对象,并复制到一块新的完全未使用的空间中,对应于新生代,就是在Eden和FromSpace或ToSpace之间copy。新生代采用空闲指针的方式来控制GC触发,指针保持最后一个分配的对象在新生代区间的位置,当有新的对象要分配内存时,用于检查空间是否足够,不够就触发GC。当连续分配对象时,对象会逐渐从eden到survivor,最后到旧生代。

  2. 旧生代的GC:旧生代与新生代不同,对象存活的时间比较长,比较稳定,因此采用标记(Mark)算法来进行回收,所谓标记就是扫描出存活的对象,然后再进行回收未被标记的对象,回收后对用空出的空间要么进行合并,要么标记出来便于下次进行分配,总之就是要减少内存碎片带来的效率损耗。

如何判断对象是否可以被回收?

  1. 引用计数法

  2. 根搜索算法

垃圾收集算法:

  1. 标记-清除(Mark-Sweep)算法

  2. 复制算法

  3. 标记-整理算法

  4. 分代收集算法

GC的基本原理:将内存中不再被使用的对象进行回收,GC中用于回收的方法称为收集器,由于GC需要消耗一些资源和时间,Java在对对象的生命周期特征进行分析后,按照新生代、旧生代的方式来对对象进行收集,以尽可能的缩短GC对应用造成的暂停

  1. 对新生代的对象的收集称为minor GC;

  2. 对旧生代的对象的收集称为Full GC;

  3. 程序中主动调用System.gc()强制执行的GC为Full GC。

不同的对象引用类型, GC会采用不同的方法进行回收,JVM对象的引用分为了四种类型:

  1. 强引用:默认情况下,对象采用的均为强引用(这个对象的实例没有其他对象引用,GC时才会被回收)

  2. 软引用:软引用是Java中提供的一种比较适合于缓存场景的应用(只有在内存不够用的情况下才会被GC)

  3. 弱引用:在GC时一定会被GC回收

  4. 虚引用:由于虚引用只是用来得知对象是否被GC

JVM和DVM的不同点

1. Dalvik 和标准 Java 虚拟机(JVM)的首要差别

Dalvik 基于寄存器,而 JVM 基于栈。基于寄存器的虚拟机对于更大的程序来说,在它们编译的时候,花费的时间更短。

2. Dalvik 和 Java 字节码的区别

Dalvik执行.dex格式的字节码,而JVM执行.class格式的字节码。android程序编译完之后生产.class文件,还有通过aapt工具生成的R.class等,然后dx工具会把.class文件处理成.dex文件,最终资源文件和.dex文件等打包成.apk文件。

3. Dalvik和Java运行环境的区别

Dalvik主要是完成对象生命周期管理,堆栈管理,线程管理,安全和异常管理,以及垃圾回收等等重要功能。 Dalvik负责进程隔离和线程管理,每一个Android应用在底层都会对应一个独立的Dalvik虚拟机实例,其代码在虚拟机的解释下得以执行。